Special Session 33: Nonlinear Elliptic and Parabolic Problems in Mathematical Sciences

نویسنده

  • Yoshihisa Morita
چکیده

Recent developments of mathematical study for nonlinear PDEs (partial di↵erential equations) provide new ideas and various techniques based on calculus of variations, dynamical systems, asymptotic analysis, qualitative theory etc. In this session we bring together researchers in this research area to present new results for nonlinear parabolic and elliptic equations arising from mathematical science and related problems. Various lectures will be delivered by both senior and junior experts in the field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical scheme for solving nonlinear backward parabolic problems

‎In this paper a nonlinear backward parabolic problem in one‎ ‎dimensional space is considered‎. ‎Using a suitable iterative‎ ‎algorithm‎, ‎the problem is converted to a linear backward parabolic‎ ‎problem‎. ‎For the corresponding problem‎, ‎the backward finite‎ ‎differences method with suitable grid size is applied‎. ‎It is shown‎ ‎that if the coefficients satisfy some special conditions‎, ‎th...

متن کامل

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega,  $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...

متن کامل

Parabolic Quasi-variational Inequalities with Gradient-Type Constraints

The paper addresses existence, uniqueness and approximation methods for a certain class of nonlinear parabolic quasi-variational inequality (QVI) problems with special gradient-type constraints. Problems of this nature are common in the mathematical modeling of superconductors and ionization in electrostatics. The results are developed based on monotone operator theory , C 0 semigroup methods a...

متن کامل

Special Session 80: Advances in the Numerical Solution of nonlinear evolution equations

The intention of this special session on ”Advances in the numerical solution of nonlinear evolution equations” is to gather mathematicians and theoretical physicists, interconnected through their field of application, the analytical tools, or the numerical methods used. The scope of topics includes but is not limited to Schrödinger type equations, highly oscillatory equations, parabolic problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012